
SALT.STATES.FILE

OPERATIONSONREGULAR FILES, SPECIAL FILES,
DIRECTORIES, AND SYMLINKS

Salt States can aggressively manipulate files on a system. There are a number of ways in which
files can be managed.

The states.file module enables you to alter configuration files to complete tasks such as
upgrading operating systems, changing permissions, security settings, adding and configuring
nodes.

Virtual name:

(heading 2) For new Salt users:

For further information about states, see
● Configuration management Getting Started tutorial

https://docs.saltproject.io/en/getstarted/config/functions.html
● Configuration management and states tutorials

https://docs.saltproject.io/en/latest/topics/states/index.html
● Writing Salt states https://docs.saltproject.io/en/latest/ref/states/writing.html

Here is a quick guide to common salt.states.file examples. For more examples, see the
functions reference below.

● Manage regular files with the file.managed state
● Use py renderer as a templating option
● Specify a file with the the source parameter
● Use the names parameter to expand the contents of a single state
● Manage special files with the mknod function
● Manage directories with the directory function
● Use the symlink function
● Manage directories recursively with the recurse function
● Manage backup directories with the retention schedule function

https://docs.saltproject.io/en/getstarted/config/functions.html
https://docs.saltproject.io/en/latest/topics/states/index.html
https://docs.saltproject.io/en/latest/ref/states/writing.html

(link to bullet, new heading) Manage regular files with the file.managed state

Regular files can be enforced with the file.managed state. This state downloads files from the
salt master and places them on the target system. Managed files can be rendered as a jinja,
mako, or wempy template, adding a dynamic component to file management. An example
of file.managed which makes use of the jinja templating system would look like this:

For example, here file.managed uses the jinja templating system:

/etc/http/conf/http.conf:
file.managed:
- source: salt://apache/http.conf
- user: root
- group: root
- mode: 644
- attrs: ai
- template: jinja
- defaults:

custom_var: "default value"
other_var: 123

{% if grains['os'] == 'Ubuntu' %}
- context:

custom_var: "override"
{% endif %}

(link to bullet, new heading) Use py renderer as a templating option

It is also possible to use the py renderer as a templating option. The template would be a
Python script which would need to contain a function called run(), which returns a string. All
arguments to the state will be made available to the Python script as globals. The returned
string will be the contents of the managed file. For example:

For example:

def run():
lines = ['foo', 'bar', 'baz']
lines.extend([source, name, user, context]) # Arguments as globals
return '\n\n'.join(lines)

Note:

https://docs.saltproject.io/en/latest/ref/states/all/salt.states.file.html#salt.states.file.managed
https://docs.saltproject.io/en/latest/ref/states/all/salt.states.file.html#salt.states.file.managed
https://docs.saltproject.io/en/latest/ref/states/all/salt.states.file.html#salt.states.file.managed
https://docs.saltproject.io/en/latest/ref/renderers/all/salt.renderers.py.html#module-salt.renderers.py

The defaults and context arguments require extra indentation (four spaces instead of the
normal two) in order to create a nested dictionary. More information. See YAML idiosyncrasies
for more information.

If using a template, any user-defined template variables in the file defined insource must be
passed in using the defaults and/or context arguments. The general best practice is to place
default values in defaults, with conditional overrides going into context, as seen above.

The template will receive a variable custom_var, which would be accessed in the template using
{{ custom_var }}. If the operating system is Ubuntu, the value of the variable custom_var would
be override, otherwise it is the default default value

(link to bullet, new heading) Specify a file with the the source parameter

The source parameter can be specified as a list. If this is done, then the first file to be matched
will be the one that is used. This allows you to have a default file on which to fall back if the
desired file does not exist on the Salt fileserver. Here's an example:

/etc/foo.conf:
file.managed:
- source:
- salt://foo.conf.{{ grains['fqdn'] }}
- salt://foo.conf.fallback

- user: foo
- group: users
- mode: 644
- attrs: i
- backup: minion

Note:

Salt supports backing up managed files via the backup option. For more details on this
functionality please review the backup_mode documentation.

The source parameter can also specify a file in another Salt environment. In this example
foo.conf in the dev environment will be used instead.

/etc/foo.conf:
file.managed:
- source:
- 'salt://foo.conf?saltenv=dev'

- user: foo
- group: users
- mode: '0644'
- attrs: i

https://docs.saltproject.io/en/latest/topics/troubleshooting/yaml_idiosyncrasies.html#nested-dict-indentation
https://docs.saltproject.io/en/latest/topics/troubleshooting/yaml_idiosyncrasies.html#nested-dict-indentation
https://docs.saltproject.io/en/latest/ref/states/backup_mode.html#file-state-backups

Warning: Caution:

When using a mode that includes a leading zero you must wrap the value in single quotes. If the
value is not wrapped in quotes it will be read by YAML as an integer and evaluated as an octal.

(link to bullet, new heading) Use the names parameter to expand the contents of a single
state

The names parameter, which is part of the state compiler, can be used to expand the contents of
a single state declaration into multiple, single state declarations. Each item in the names list
receives its own individual state name and is converted into its own low-data structure. This is a
convenient way to manage several files with similar attributes.

salt_master_conf:
file.managed:
- user: root
- group: root
- mode: '0644'
- names:
- /etc/salt/master.d/master.conf:
- source: salt://saltmaster/master.conf

- /etc/salt/minion.d/minion-99.conf:
- source: salt://saltmaster/minion.conf

Note:

There is more documentation about this feature in the Names declaration section of the
Highstate docs.

(link to bullet, new heading) Manage special files with the mknod function

Special files can be managed via the mknod function. This function will create and enforce the
permissions on a special file. The function supports the creation of character devices, block
devices, and FIFO pipes. The function will create the directory structure up to the special file if it
is needed on the minion. The function will not overwrite or operate on (change major/minor
numbers) existing special files with the exception of user, group, and permissions. In most
cases the creation of some special files require root permissions on the minion. This would
require that the minion to be run as the root user. Here is an example of a character device:

/var/named/chroot/dev/random:
file.mknod:
- ntype: c
- major: 1

https://docs.saltproject.io/en/latest/ref/states/highstate.html#names-declaration
https://docs.saltproject.io/en/latest/ref/states/highstate.html#states-highstate

- minor: 8
- user: named
- group: named
- mode: 660

Here is an example of a block device:

/var/named/chroot/dev/loop0:
file.mknod:
- ntype: b
- major: 7
- minor: 0
- user: named
- group: named
- mode: 660

Here is an example of a fifo pipe:

/var/named/chroot/var/log/logfifo:
file.mknod:
- ntype: p
- user: named
- group: named
- mode: 660

(link to bullet, new heading) Manage directories with the directory function

Directories can be managed via the directory function. This function can create and enforce
the permissions on a directory. A directory statement will look like this:

/srv/stuff/substuf:
file.directory:
- user: fred
- group: users
- mode: 755
- makedirs: True

If you need To enforce user and/or group ownership or permissions recursively on the
directory's contents, you can do so by adding add a recurse directive:

/srv/stuff/substuf:
file.directory:
- user: fred
- group: users
- mode: 755
- makedirs: True

- recurse:
- user
- group
- mode

As a default, mode will resolve to dir_mode and file_mode. , to To specify both directory and file
permissions, use this form:

/srv/stuff/substuf:
file.directory:
- user: fred
- group: users
- file_mode: 744
- dir_mode: 755
- makedirs: True
- recurse:
- user
- group
- mode

(link to bullet, new heading)Use symlinks

Symlinks can be easily created; The symlink function is very simple and only takes a few
arguments:

/etc/grub.conf:
file.symlink:
- target: /boot/grub/grub.conf

(link to bullet, new heading) Manage directories recursively with the recurse function

Recursive directory management can also be set via the recurse function. Recursive directory
management allows for a directory on the salt master to be recursively copied down to the
minion. This is a great tool for deploying large code and configuration systems. Here is an
example of a A state using recurse: would look something like this:

/opt/code/flask:
file.recurse:
- source: salt://code/flask
- include_empty: True

A more complex recurse example:

{% set site_user = 'testuser' %}
{% set site_name = 'test_site' %}

{% set project_name = 'test_proj' %}
{% set sites_dir = 'test_dir' %}

django-project:
file.recurse:
- name: {{ sites_dir }}/{{ site_name }}/{{ project_name }}
- user: {{ site_user }}
- dir_mode: 2775
- file_mode: '0644'
- template: jinja
- source: salt://project/templates_dir
- include_empty: True

(link to bullet, new heading)Manage backup directories with the retention schedule function

Retention scheduling can be applied to manage contents of backup directories. For example:

/var/backups/example_directory:
file.retention_schedule:
- strptime_format: example_name_%Y%m%dT%H%M%S.tar.bz2
- retain:

most_recent: 5
first_of_hour: 4
first_of_day: 14
first_of_week: 6
first_of_month: 6
first_of_year: all

—---

(heading) Functions reference

salt.states.file.absent(name, **kwargs)

Make sure that the named file or directory is absent. If it exists, it will be deleted. This will work
to reverse any of the functions in the file state module. If a directory is supplied, it will be
recursively deleted.

Ensures that a named file or directory, if it exists, will be deleted. This will remove any file nodes
that can be created with the states.file module, including hard- and symlinks. If a directory is
supplied, it will be recursively deleted.

If only the contents of the directory need to be deleted but not the directory itself, use
file.directory with clean=True

https://docs.saltproject.io/en/latest/ref/states/all/salt.states.file.html#salt.states.file.directory

name
The path which should be deleted.

salt.states.file.accumulated(name, filename, text, **kwargs)

Prepare accumulator which can be used in template in file.managed state. Accumulator
dictionary becomes available in template. It can also be used in file.blockreplace.

Creates an accumulator which can be used in a template in file.managed state. The
accumulator dictionary becomes available in the template. It can also be used with
file.blockreplace.

You can use accumulators to record one or more lists of items such as users, services,
addresses, configuration commands, etc.

name
Accumulator name

filename
Filename which would receive this accumulator (see file.managed state documentation about
name)

Filename of file to which the accumulator is applied (see file.managed state documentation
for name)

text
String or list for adding in accumulator

String or list to add to the accumulator

require_in / watch_in
One of them required for sure we fill up accumulator before we manage the file. Probably the
same as filename

One of require_in / watch_in or both is required to initiate the accumulator.

Example:

Given the following:

animals_doing_things:
file.accumulated:

- filename: /tmp/animal_file.txt
- text: ' jumps over the lazy dog.'
- require_in:

- file: animal_file

animal_file:
file.managed:

- name: /tmp/animal_file.txt
- source: salt://animal_file.txt
- template: jinja

One might write a template for animal_file.txt like the following:
You can write the following template for animal_file.txt:

The quick brown fox{% for animal in
accumulator['animals_doing_things'] %}{{ animal }}{% endfor %}

Collectively, the above states and template file will produce:
The above states and template file will return:

The quick brown fox jumps over the lazy dog.

Multiple accumulators can be "chained" together.

Tip:
You can have multiple accumulators running in a given Salt run - the name is important.
Whatever runs the accumulator must run after all the steps that put data into the accumulator.

Note:
The 'accumulator' data structure is a Python dictionary. Do not expect any You cannot loop over
the keys in a deterministic order.

Example 2:

Here accumulated is used in an accounts formula to build a list of users authorized to log in to
a given host. This file can be used to fulfill various purposes, including as a pam limiter.

Various teams or groups of users may or may not be authorized on a given host. Each
team/group is configured in a different formula file.

The accounts/TEAM.sls contains:

include:
- accounts.nhgri_authorized_users

accounts - teams - unix - nhgri_authorized_users add unixteam users:
file.accumulated:
- name: users
- text: |

{{ salt['pillar.get']('unixteam', [])|join('\n')|indent(8) }}
- filename: /etc/security/nhgri_authorized_users
- require_in:

- file: accounts - nhgri_authorized_users -
create_nhgri_authorized_users

local_users are assigned to various hosts and added as follows:

accounts - auth-ad - el8 - add local_users pillar to
nhgri_authorized_users accumulator:

file.accumulated:
- name: users
- filename: /etc/security/nhgri_authorized_users
- text: |

{{ salt['pillar.get']('local_users', [])|join('\n')|indent(8)
}}

- require_in:
- file: accounts - nhgri_authorized_users -

create_nhgri_authorized_users

(basically the same code as above, just in a different formula/sub-formula)
The above code is the same as the preceding code, with a different formula/sub-formula

At the very end, in its own accounts/sub-formula, we have the single state that writes it all out:
Here is the single state that writes it all out:

accounts - nhgri_authorized_users - create_nhgri_authorized_users:

file.managed:
- source: salt://accounts/files/nhgri_authorized_users.j2
- name: /etc/security/nhgri_authorized_users
- user: root
- group: root
- mode: "0600"
- template: jinja

salt.states.file.append(name, text=None,makedirs=False, source=None,

source_hash=None, template='jinja', sources=None, source_hashes=None, defaults=None,
context=None, ignore_whitespace=True)

Ensures that some text appears at the end of a file.

The text will not be appended if it already exists in the file. A single string of text or a list of
strings may be appended.

Use append when you have configuration files such as resolv.conf or networks where the
system facility expects to see a specific immutable code block at the end of the config.

name
The location of the file to append to.
The location of the file to which the text will be appended.

text
The text to be appended, which can be a single string or a list of strings.

makedirs
If the file is located in a path without a parent directory, then the state will fail. If makedirs is
set to True, then the parent directories will be created to facilitate the creation of the named file.
Defaults to False.

source
A single source file to append. This source file can be hosted on either the Salt master server,
or on an HTTP or FTP server. Both HTTPS and HTTP are supported as well as downloading
directly from Amazon S3 compatible URLs with both pre-configured and automatic IAM
credentials (see s3.get state documentation). File retrieval from Openstack Swift object storage
is supported via swift://container/object_path URLs (see swift.get documentation).
For files hosted on the salt file server, if the file is located on the master in the directory named
spam, and is called eggs, the source string is salt://spam/eggs.

If the file is hosted on an HTTP or FTP server, the source_hash argument is also required.

source_hash
This can be one of the following:

1. A source hash string.
2. The URI of a file that contains source hash strings.

The function accepts the first-encountered long unbroken alphanumeric string of correct length
as a valid hash, in order from most secure to least secure:

Type Length
====== ======
sha512 128
sha384 96
sha256 64
sha224 56
sha1 40
md5 32

See the source_hash parameter description for the file.managed function for more details
and examples.

template
The named templating engine that will be used to render the appended-to file. Defaults to
jinja. The following templates are supported:

● cheetah
● genshi
● jinja
● mako
● py
● wempy

sources
A list of source files to append. If the files are hosted on an HTTP or FTP server, the
source_hashes argument is also required.

source_hashes
A list of source_hashes corresponding to the sources list specified in the sources argument.

defaults
Default context passed to the template.

context
Overrides default context variables passed to the template.

https://docs.saltproject.io/en/latest/ref/states/all/salt.states.file.html#salt.states.file.managed
https://docs.saltproject.io/en/latest/ref/renderers/all/salt.renderers.cheetah.html#module-salt.renderers.cheetah
https://docs.saltproject.io/en/latest/ref/renderers/all/salt.renderers.genshi.html#module-salt.renderers.genshi
https://docs.saltproject.io/en/latest/ref/renderers/all/salt.renderers.jinja.html#module-salt.renderers.jinja
https://docs.saltproject.io/en/latest/ref/renderers/all/salt.renderers.mako.html#module-salt.renderers.mako
https://docs.saltproject.io/en/latest/ref/renderers/all/salt.renderers.py.html#module-salt.renderers.py
https://docs.saltproject.io/en/latest/ref/renderers/all/salt.renderers.wempy.html#module-salt.renderers.wempy

ignore_whitespace
New in version 2015.8.4.
Spaces and Tabs in text are ignored by default, when searching for the appending content, one
space or multiple tabs are the same for salt. Set this option to False if you want to change this
behavior.

Spaces and tabs in text are ignored by default when searching for the content to be appended.
One space or multiple tabs are the same for Salt. Set this option to False to change this
behavior.

Multi-line example:
Example - Multi-line:

/etc/motd:
file.append:

- text: |
Thou hadst better eat salt with the Philosophers of Greece,
than sugar with the Courtiers of Italy.

- Benjamin Franklin

Example - Multiple lines of text:
/etc/motd:

File.append:
- text:

- Trust no one unless you have eaten much salt with him.
- "Salt is born of the purest of parents: the sun and the sea."

Example - Gather text from multiple template files:
/etc/motd:

file:f
- append
- template: jinja
- sources:

- salt://motd/devops-messages.tmpl
- salt://motd/hr-messages.tmpl
- salt://motd/general-messages.tmpl

New in version 0.9.5.

salt.states.file.blockreplace(name, marker_start='#--start managed

zone --', marker_end='#-- end managed zone --', source=None, source_hash=None,

template='jinja', sources=None, source_hashes=None, defaults=None,

context=None, content='', append_if_not_found=False,

prepend_if_not_found=False, backup='.bak', show_changes=True,

append_newline=None, insert_before_match=None, insert_after_match=None)

Maintains Allows an edit in a file in a zone section delimited by two line markers.

Blockreplace can be used in configuration files where the system facility expects to see a
specific code block, and designated blocks to substitute your own configuration are provided.

New in version 2014.1.0.
Changed in version 2017.7.5,2018.3.1: append_newline argument added. Additionally, to
improve idempotence, if the string represented by marker_end is found in the middle of the line,
the content preceding the marker will be removed when the block is replaced. This allows one to
remove append_newline: False from the SLS and have the block properly replaced if the end of
the content block is immediately followed by themarker_end (i.e. no newline before the marker).

A block of content delimited by comments can help you manage several lines entries without
worrying about old entries removal the removal of old entries. This can help you maintaining
maintain an un-managed file containing manual edits.

Note: Tip:
This function will store two copies of the file in-memory (the original version and the edited
version) in order to detect changes and only edit the targeted file if necessary.
Additionally, you can use file.accumulated and target this state. All accumulated data
dictionaries' content will be added in the content block.

name
Filesystem path to the file to be edited.

marker_start
The line content identifying a line as the start of the content block. Note that the whole line
containing this marker will be considered, so whitespace or extra content before or after the
marker is included in the final output.

marker_end
The line content identifying the end of the content block. As of versions 2017.7.5 and 2018.3.1,
everything up to the text matching the marker will be replaced, so it's important to ensure that
your marker includes the beginning of the text you wish to replace.

https://docs.saltproject.io/en/latest/ref/states/all/salt.states.file.html#salt.states.file.accumulated

content
The content to be used placed between the two lines identified by marker_start and
marker_end.

source
The source file to download to the minion, this source file can be hosted on either the Salt
master server, or on an HTTP or FTP server. Both HTTPS and HTTP are supported as well as
downloading directly from Amazon S3 compatible URLs with both pre-configured and automatic
IAM credentials. (see s3.get state documentation)

(newline) File retrieval from Openstack Swift object storage is supported via
swift://container/object_path URLs, see swift.get documentation. For files hosted on the Salt file
server, if the file is located on the master in the directory named spam, and is called eggs, the
source string is salt://spam/eggs.

(newline) If source is left blank or None (use ~ in YAML), the file will be created as an empty
file and the content will not be managed. This is also the case when a file already exists and the
source is undefined; the contents of the file will not be changed or managed.

If the file is hosted on a HTTP or FTP server then the source_hash argument is also required.
A list of sources can also be passed in to provide a default source and a set of fallbacks. The
first source in the list that is found to exist will be used and subsequent entries in the list will be
ignored.

file_override_example:
file.blockreplace:

- name: /etc/example.conf
- source:

- salt://file_that_does_not_exist
- salt://file_that_exists

source_hash
This can be one of the following:

1. a A source hash string.
2. the The URI of a file that contains source hash strings.

The function accepts the first encountered long unbroken alphanumeric string of correct length
as a valid hash, in order from most secure to least secure:

Type Length
====== ======
sha512 128
sha384 96
sha256 64

sha224 56
sha1 40
md5 32

See the source_hash parameter description for the file.managed function for more details
and examples.

template
Specifies the templating engine to be used to render the downloaded file. The following engines
are supported:

● cheetah
● genshi
● jinja
● mako
● py
● wempy

context
Overrides default context variables passed to the template.

defaults
Default context passed to the template.

append_if_not_found
If markers are not found and this option is set to True, the content block will be appended to the
file.

prepend_if_not_found
If markers are not found and this option is set to True, the content block will be prepended to
the file.

insert_before_match
If markers are not found, this parameter can be set to a regex which will insert the block before
the first found occurrence in the file.
New in version 3001.

insert_after_match
If markers are not found, this parameter can be set to a regex which will insert the block after
the first found occurrence in the file.
New in version 3001.

backup
The file extension to use for a backup of the file if any edit is made. Set this to False to skip
making a backup.

https://docs.saltproject.io/en/latest/ref/states/all/salt.states.file.html#salt.states.file.managed
https://docs.saltproject.io/en/latest/ref/renderers/all/salt.renderers.cheetah.html#module-salt.renderers.cheetah
https://docs.saltproject.io/en/latest/ref/renderers/all/salt.renderers.genshi.html#module-salt.renderers.genshi
https://docs.saltproject.io/en/latest/ref/renderers/all/salt.renderers.jinja.html#module-salt.renderers.jinja
https://docs.saltproject.io/en/latest/ref/renderers/all/salt.renderers.mako.html#module-salt.renderers.mako
https://docs.saltproject.io/en/latest/ref/renderers/all/salt.renderers.py.html#module-salt.renderers.py
https://docs.saltproject.io/en/latest/ref/renderers/all/salt.renderers.wempy.html#module-salt.renderers.wempy

dry_run
If True, do not make any edits to the file and simply return the changes that would be made.

show_changes
Controls how changes are presented. If True, the Changes section of the state return will
contain a unified diff of the changes made. If False, then it will contain a boolean (True if any
changes were made, otherwise False).

append_newline
Controls whether or not a newline is appended to the content block. If the value of this argument
is True then a newline will be added to the content block. If it is False, then a newline will not
be added to the content block. If it is unspecified, then a newline will only be added to the
content block if it does not already end in a newline.
New in version 2017.7.5,2018.3.1.

Example of usage with an accumulator and with a variable:
{% set myvar = 42 %}
hosts-config-block-{{ myvar }}:

file.blockreplace:
- name: /etc/hosts
- marker_start: "# START managed zone {{ myvar }} -DO-NOT-EDIT-"
- marker_end: "# END managed zone {{ myvar }} --"
- content: 'First line of content'
- append_if_not_found: True
- backup: '.bak'
- show_changes: True

hosts-config-block-{{ myvar }}-accumulated1:
file.accumulated:

- filename: /etc/hosts
- name: my-accumulator-{{ myvar }}
- text: "text 2"
- require_in:

- file: hosts-config-block-{{ myvar }}

hosts-config-block-{{ myvar }}-accumulated2:
file.accumulated:

- filename: /etc/hosts
- name: my-accumulator-{{ myvar }}
- text: |

text 3
text 4

- require_in:
- file: hosts-config-block-{{ myvar }}

will generate and maintain a block of content in /etc/hosts:
START managed zone 42 -DO-NOT-EDIT-
First line of content
text 2
text 3
text 4
END managed zone 42 –

salt.states.file.cached(name, source_hash='', source_hash_name=None,

skip_verify=False, saltenv='base', use_etag=False)

New in version 2017.7.3.
Changed in version 3005.

Ensures that a file is saved to the minion's cache. This state is primarily invoked by other states
to ensure that we do not re-download a source file if we do not need to.

name
The URL of the file to be cached. To cache a file from an environment other than base, either
use the saltenv argument or include the saltenv in the URL (e.g.
salt://path/to/file.conf?saltenv=dev).

Note:
A list of URLs is not supported, this must be a single URL. If a local file is passed here, then the
state will obviously not try to download anything, but it will compare a hash if one is specified.

source_hash
See the documentation for this same argument in the file.managed state.

Note:
For remote files not originating from the salt:// fileserver, such as http(s) or ftp servers, this state
will not re-download the file if the locally-cached copy matches this hash. This is done to prevent
unnecessary downloading on repeated runs of this state. To update the cached copy of a file, it
is necessary to update this hash.

source_hash_name
See the documentation for this same argument in the file.managed state.

skip_verify

https://docs.saltproject.io/en/latest/ref/states/all/salt.states.file.html#salt.states.file.managed
https://docs.saltproject.io/en/latest/ref/states/all/salt.states.file.html#salt.states.file.managed

See the documentation for this same argument in the file.managed state.

Note:
Setting this to True will result in a copy of the file being downloaded from a remote (http(s), ftp,
etc.) source each time the state is run.

saltenv
Used to specify the environment from which to download a file from the Salt fileserver (i.e. those
with salt:// URL).

use_etag
If True, remote http/https file sources will attempt to use the ETag header to determine if the
remote file needs to be downloaded. This provides a lightweight mechanism for promptly
refreshing files changed on a web server without requiring a full hash comparison via the
source_hash parameter.
New in version 3005.

Examples:

This state will in most cases not be useful in SLS files, but it is useful when writing a state or
remote-execution module that needs to make sure that a file at a given URL has been
downloaded to the cachedir. One example of this is in the archive.extracted state:
result = __states__['file.cached'](source_match,

source_hash=source_hash,
source_hash_name=source_hash_name,
skip_verify=skip_verify,
saltenv=__env__)

This will return a dictionary containing the state's return data, including a result key which will
state whether or not the state was successful. Note that this will not catch exceptions, so it is
best used within a try/except.

Once this state has been run from within another state or remote-execution module, the actual
location of the cached file can be obtained using cp.is_cached:
cached = __salt__['cp.is_cached'](source_match, saltenv=__env__)

This function will return the cached path of the file, or an empty string if the file is not present in
the minion cache.

salt.states.file.comment(name, regex, char='#', backup='.bak',

ignore_missing=False)

New in version 0.9.5.

https://docs.saltproject.io/en/latest/ref/states/all/salt.states.file.html#salt.states.file.managed
https://docs.saltproject.io/en/latest/ref/modules/all/salt.modules.cp.html#salt.modules.cp.is_cached

Changed in version 3005.

Comments out specified lines in a file.

For example, when a package ships a default configuration file, but doesn't support overrides in
separate files, you can comment-out a single item.

name
The full path to the file to be edited.

regex
A regular expression used to find the lines that are to be commented; this pattern will be
wrapped in parenthesis and will move any preceding/trailing ^ or $ characters outside the
parenthesis (e.g., the pattern ^foo$ will be rewritten as ^(foo)$). Note that you _need_ the
leading ^, otherwise each time you run highstate, another comment char will be inserted.

Note: The leading ^ is required, otherwise each time you run highstate, another comment char
will be inserted.

char
The character to be inserted at the beginning of a line in order to comment it out

backup
The file will be backed up before edit Before the file is changed a backup file will be generated
with this file extension

Warning: Caution:
This backup will be overwritten each time sed / comment / uncomment is called. Meaning t The
backup will only be useful after the first invocation.

Set to False/None to not keep a backup.

ignore_missing
Ignore a failure to find the regex in the file. This is useful for scenarios where a line must only be
commented if it is found in the file.

New in version 3005.

Usage:
Example:
/etc/fstab:

file.comment:
- regex: ^bind 127.0.0.1

salt.states.file.copy_(name, source, force=False, makedirs=False,

preserve=False, user=None, group=None, mode=None, subdir=False, **kwargs)

Copies a file to the named path if the file defined by the source option exists on the minion. copy
it to the named path. The file will not be overwritten if it already exists, unless the force option
is set to True.

Note:
This state only copies files from one location on a minion to another location on the same
minion. For copying files from the master, use a file.managed state.

name
The location of the file to copy to
The location where the file is to be copied.

source
The location of the file to copy to the location specified with name
The current location of the file that will be copied to the location specified by name.

force
If the target location is present then the file will not be moved, specify "force: True" to overwrite
the target file
If the target location is present then the file will not be moved. Specify force: True to
overwrite the target file.

makedirs
If the target subdirectories don't exist create them
If the target subdirectories don't exist, create them by specifying makedirs: True

preserve
New in version 2015.5.0.
Set preserve: True to preserve user/group ownership and mode after copying. Default is
False. If preserve is set to True, then user/group/mode attributes will be ignored.

user
New in version 2015.5.0.
The user to own the copied file, this defaults to the user salt is running as on the minion. If
preserve is set to True, then this will be ignored

https://docs.saltproject.io/en/latest/ref/states/all/salt.states.file.html#salt.states.file.managed

The user who will own the copied file. This defaults to the user Salt is running as on the minion.
If preserve is set to True, then this will be ignored.

group
New in version 2015.5.0.
The group to own the copied file, this defaults to the group salt is running as on the minion. If
preserve is set to True or on Windows this will be ignored
The group that will own the copied file. This defaults to the group Salt is running as on the
minion. If preserve is set to True or on Windows this will be ignored.

mode
New in version 2015.5.0.
The permissions to set on the copied file, aka 644, '0775', '4664'. If preserve is set to True,
then this will be ignored. Not supported on Windows. The default mode for new files and
directories corresponds to umask of Salt process. For existing files and directories it's not
enforced.

subdir
New in version 2015.5.0.
If the name is a directory then place the file inside the named directory

Note:
The copy function accepts paths that are local to the Salt minion. This function does not support
salt://, http://, or the other additional file paths that are supported by states.file.managed
and states.file.recurse.

Usage:
Example:
Use 'copy', not 'copy_'
/etc/example.conf:

file.copy:
- source: /tmp/example.conf

salt.states.file.decode(name, encoded_data=None, contents_pillar=None,

encoding_type='base64', checksum='md5')

Decodes an encoded file and write it to disk.

New in version 2016.3.0.

name

https://docs.saltproject.io/en/latest/ref/states/all/salt.states.file.html#salt.states.file.managed
https://docs.saltproject.io/en/latest/ref/states/all/salt.states.file.html#salt.states.file.recurse

Path of the file to be written.

encoded_data
The encoded file. Either this option or contents_pillar must be specified.

contents_pillar
A Pillar path to the encoded file. Uses the same path syntax as pillar.get. The
hashutil.base64_encodefile function can load encoded content into Pillar. Either this
option or encoded_data must be specified.

encoding_type
The type of encoding.

checksum
The hashing algorithm to use to generate checksums. Wraps the hashutil.digest
execution function.

Usage:
Example:
write_base64_encoded_string_to_a_file:

file.decode:
- name: /tmp/new_file
- encoding_type: base64
- contents_pillar: mypillar:thefile

or

write_base64_encoded_string_to_a_file:
file.decode:

- name: /tmp/new_file
- encoding_type: base64
- encoded_data: |

Z2V0IHNhbHRlZAo=

Be careful with multi-line strings that the YAML indentation is correct. E.g.,

For example:
write_base64_encoded_string_to_a_file:

file.decode:
- name: /tmp/new_file
- encoding_type: base64
- encoded_data: |

{{ salt.pillar.get('path:to:data') | indent(8) }}

https://docs.saltproject.io/en/latest/ref/modules/all/salt.modules.pillar.html#salt.modules.pillar.get
https://docs.saltproject.io/en/latest/ref/modules/all/salt.modules.hashutil.html#salt.modules.hashutil.base64_encodefile
https://docs.saltproject.io/en/latest/ref/modules/all/salt.modules.hashutil.html#salt.modules.hashutil.digest

salt.states.file.directory(name, user=None, group=None, recurse=None,

max_depth=None, dir_mode=None, file_mode=None, makedirs=False, clean=False,

require=None, exclude_pat=None, follow_symlinks=False, force=False,

backupname=None, allow_symlink=True, children_only=False, win_owner=None,

win_perms=None, win_deny_perms=None, win_inheritance=True,

win_perms_reset=False, **kwargs)

Ensures that a named directory is present and has the right perms correct permissions.
directory can be used to individually create directories, setting permissions and ownership
for each as needed.

name
The location to create or manage a directory, as an absolute path
The location where a directory is to be created or managed, as an absolute path

user
The user to own the directory; this defaults to the user salt is running as on the minion
The user who will own the directory. Defaults to the user salt is running as on the minion.

group
The group ownership set for the directory; this Defaults to the group salt is running as on the
minion. On Windows, this is ignored.

recurse
Enforces user/group ownership and mode of directory recursively. Accepts a list of strings
representing what you would like to recurse.
(newline)
If mode is defined, will recurse on both file_mode and dir_mode if they are defined. If
ignore_files or ignore_dirs is included, files or directories will be left unchanged
respectively. If silent is defined, individual file/directory change notifications will be suppressed.

Example:
/var/log/httpd:

file.directory:
- user: root
- group: root
- dir_mode: 755
- file_mode: 644

- recurse:
- user
- group
- mode

Leave files or directories unchanged:
/var/log/httpd:

file.directory:
- user: root
- group: root
- dir_mode: 755
- file_mode: 644
- recurse:

- user
- group
- mode
- ignore_dirs

New in version 2015.5.0.

max_depth
Limits the recursion depth. The default is no limit=None. max_depth and clean are
mutually exclusive.
New in version 2016.11.0.

dir_mode / mode
The permissions mode to set any directories created. Not supported on Windows.
The default mode for new files and directories corresponds to umask of salt process. For
existing files and directories it's not enforced.

file_mode
The permissions mode to set any files created if 'mode' is run in 'recurse'. This defaults to
dir_mode. Not supported on Windows. The default mode for new files and directories
corresponds to umask of Salt process. For existing files and directories it's not enforced.

makedirs
If the directory is located in a path without a parent directory, then the state will fail. If makedirs
is set to True, then the parent directories will be created to facilitate the creation of the named
file.

clean
Removes any files that are not referenced by a required file state. See examples below for more
info. If this option is set then everything in this directory will be deleted unless it is required.
clean and max_depth are mutually exclusive.

require
Requires other resources such as packages or files.

exclude_pat
When clean is set to True, exclude this pattern from the removal list and preserve it in the
destination.

follow_symlinks
If the desired path is a symlink (or recurse is defined and a symlink is encountered while
recursing), follow it and check the permissions of the directory/file to which the symlink points.
New in version 2014.1.4.
Changed in version 3001.1: If set to False symlinks permissions are ignored on Linux systems
because it does not support permissions modification. Symlinks permissions are always 0o777
on Linux.

force
If the name of the directory exists and is not a directory and force is set to False, the state will
fail. If force is set to True, the file in the way of the directory will be deleted to make room for
the directory, unless backupname is set, then it will be renamed.
New in version 2014.7.0.

backupname
If the name of the directory exists and is not a directory, it will be renamed to the backupname.
If the backupname already exists and force is False, the state will fail. Otherwise, the
backupname will be removed first.
New in version 2014.7.0.

allow_symlink
If allow_symlink is True and the specified path is a symlink, it will be allowed to remain if it
points to a directory. If allow_symlink is False then the state will fail, unless force is also
set to True, in which case it will be removed or renamed, depending on the value of the
backupname argument.
New in version 2014.7.0.

children_only
If children_only is True the base of a path is excluded when performing a recursive
operation. In case of /path/to/base, base will be ignored while all of /path/to/base/* are still
operated on.

win_owner
The owner of the directory. If this is not passed, user will be used. If user is not passed, the
account under which Salt is running will be used.

New in version 2017.7.0.

win_perms
A dictionary containing permissions to grant and their propagation. For example:
{'Administrators': {'perms': 'full_control', 'applies_to':
'this_folder_only'}} Can be a single basic perm or a list of advanced perms. perms
must be specified. applies_to is optional and defaults to this_folder_subfolder_files.
New in version 2017.7.0.

win_deny_perms
A dictionary containing permissions to deny and their propagation. For example:
{'Administrators': {'perms': 'full_control', 'applies_to':
'this_folder_only'}} Can be a single basic perm or a list of advanced perms.
New in version 2017.7.0.

win_inheritance
Set to True to inherit permissions from the parent directory. Set to False not to to not inherit
permission.
New in version 2017.7.0.

win_perms_reset
If True the existing DACL will be cleared and replaced with the settings defined in this function.
If False, new entries will be appended to the existing DACL. Default is False.
New in version 2018.3.0.

Examples:

Here's an example using the above win_* parameters:
The following example uses the above win_* parameters:

create_config_dir:
file.directory:

- name: 'C:\config\'
- win_owner: Administrators
- win_perms:

Basic Permissions
dev_ops:

perms: full_control
List of advanced permissions
appuser:

perms:
- read_attributes
- read_ea
- create_folders

- read_permissions
applies_to: this_folder_only

joe_snuffy:
perms: read
applies_to: this_folder_files

- win_deny_perms:
fred_snuffy:

perms: full_control
- win_inheritance: False

For clean: True there is no mechanism that allows all states and modules to enumerate the
files that they manage, so for file.directory to know what files are managed by Salt, a file
state targeting managed files is required. To use a contrived

For example, the following states will always have changes, despite the file named okay being
created by a Salt state:

silly_way_of_creating_a_file:
cmd.run:

- name: mkdir -p /tmp/dont/do/this && echo "seriously" >
/tmp/dont/do/this/okay

- unless: grep seriously /tmp/dont/do/this/okay

will_always_clean:
file.directory:

- name: /tmp/dont/do/this
- clean: True

Because cmd.run has no way of communicating that it's creating a file, will_always_clean
will remove the newly created file. Of course, Every time the states run the same thing will
happen - the silly_way_of_creating_a_file will create the file and
will_always_clean will always remove it, Over and over again, no matter regardless of
how many times you run it.

To make this example work correctly, we need to add a file state that targets the file, and a
require between the file states:
silly_way_of_creating_a_file:

cmd.run:
- name: mkdir -p /tmp/dont/do/this && echo "seriously" >

/tmp/dont/do/this/okay
- unless: grep seriously /tmp/dont/do/this/okay

file.managed:
- name: /tmp/dont/do/this/okay
- create: False

- replace: False
- require_in:

- file: will_always_clean

Now there is a file state that clean can check, so running those states will work as expected.
The file will be created with the specific contents, and clean will ignore the file because it is
being managed by a Salt file state. Note that if require_in was placed under cmd.run, it
would not work, because the requisite is for the cmd, not the file.
silly_way_of_creating_a_file:

cmd.run:
- name: mkdir -p /tmp/dont/do/this && echo "seriously" >

/tmp/dont/do/this/okay
- unless: grep seriously /tmp/dont/do/this/okay
This part should be under file.managed
- require_in:

- file: will_always_clean
file.managed:

- name: /tmp/dont/do/this/okay
- create: False
- replace: False

Any other state that creates a file as a result, for example pkgrepo, must have the resulting
files referenced in a file state in order for clean: True to ignore them. Also note that the
requisite (require_in vs require) works in both directions:
clean_dir:

file.directory:
- name: /tmp/a/better/way
- require:

- file: a_better_way

a_better_way:
file.managed:

- name: /tmp/a/better/way/truely
- makedirs: True
- contents: a much better way

Works the same as similarly as in this example:
clean_dir:

file.directory:
- name: /tmp/a/better/way
- clean: True

a_better_way:
file.managed:

- name: /tmp/a/better/way/truely
- makedirs: True
- contents: a much better way
- require_in:

- file: clean_dir

A common mistake here is to forget that the state name and id are both required for requisites:
Correct:
/path/to/some/file:

file.managed:
- contents: Cool
- require_in:

- file: clean_dir

Incorrect
/path/to/some/file:

file.managed:
- contents: Cool
- require_in:

should be `- file: clean_dir`
- clean_dir

Also incorrect
/path/to/some/file:

file.managed:
- contents: Cool
- require_in:

should be `- file: clean_dir`
- file

salt.states.file.exists(name, **kwargs)

Verifies that the named file or directory is present or exists. Ensures pre-requisites outside of
Salt's purview (e.g., keytabs, private keys, etc.) have been previously satisfied before
deployment.

This function does not create the file if it doesn't exist, it and will return an error.

Tip:
Use absent if you want to remove the file or directory, and use an execution module if you just
want to check.

name
Absolute path which must exist.

salt.states.file.hardlink(name, target, force=False,makedirs=False, user=None,

group=None, dir_mode=None, **kwargs)

Creates a hard link. If the file already exists and is a hard link pointing to any location other than
the specified target, the hard link will be replaced. If the hard link is a regular file or directory
then the state will return False. If the regular file is desired to be replaced with a hard link, pass
force: True

name
The location of the hard link to create.

target
The location that the hard link points to.

force
If the name of the hard link exists and force is set to False, the state will fail. If force is set to
True, the file or directory in the way of the hard link file will be deleted to make room for the
hard link, unless backupname is set, when it will be renamed

makedirs
If the location of the hard link does not already have a parent directory, then the state will fail.
Setting makedirs to True will allow Salt to create the parent directory.

user
The user to own any directories made if makedirs is set to True. This defaults to the user Salt
is running as on the minion.

group
The group ownership set on any directories made if makedirs is set to True. This defaults to
the group Salt is running as on the minion. On Windows, this is ignored.

dir_mode
If directories are to be created, passing this option specifies the permissions for those
directories.

Example:

Create hardlink:

File.hardlink:
- name: /tmp/new_hardlink
- target: /tmp/oldfile

salt.states.file.keyvalue(name, key=None, value=None, key_values=None,

separator='=', append_if_not_found=False, prepend_if_not_found=False, search

False, show_changes=True, ignore_if_missing=False, count=1, uncomment=None,

key_ignore_case=False, value_ignore_case=False)

Enables Key/Value based editing of a file. A readable and easily-maintained function that
enables modifications to configuration files.

New in version 3001.

This function differs from file.replace in that it is able to search for keys, followed by a
customizable separator, and replace the value with the given value. Should the value be the
same as the one already in the file, no changes will be made.

Either supply both key and value parameters, or supply a dictionary with key / value pairs. It is
an error to supply both.

name
Name of the file to in which to search/replace in.

key
Key to search for when ensuring a value. Use in combination with a value parameter.

value
Value to set for a given key. Use in combination with a key parameter.

key_values
Dictionary of key/value pairs to search and ensure values for. and ensure values for. Used to
specify multiple key/values at once.

separator
Separator which separates key from value.

append_if_not_found
Append the key/value to the end of the file if not found. Note that this takes precedence over

prepend_if_not_found.

prepend_if_not_found
Prepend the key/value to the beginning of the file if not found. Note that
append_if_not_found takes precedence.

show_changes
Show a diff of the resulting removals and inserts.

ignore_if_missing
Return with success even if the file is not found (or not readable).

count
Number of occurrences to allow (and correct),. Default is 1. Set to -1 to replace all, or set to 0 to
remove all lines with this key regardless of its value.

Note:
Any additional occurrences after count are removed. A count of -1 will only replace all
occurrences that are currently uncommented already. Lines commented out will be left alone.

uncomment
Disregard and remove supplied leading characters when finding keys. When set to None, lines
that are commented out are left for what they are as-is.

Note:
The argument to uncomment is not a prefix string. Rather; It is a set of characters, each of
which are stripped.

key_ignore_case
Keys are matched case insensitively. When a value is changed the matched key is kept as-is.

value_ignore_case
Values are checked case insensitively, trying to set e.g. 'Yes' while the current value is 'yes', will
not result in changes when value_ignore_case is set to True.

Examples:

An example of using file.keyvalue to ensure sshd does not allow for root to login with a
password and at the same time while setting the login-gracetime to 1 minute and disabling all
forwarding:

sshd_config_harden:
file.keyvalue:

- name: /etc/ssh/sshd_config

- key_values:
permitrootlogin: 'without-password'
LoginGraceTime: '1m'
DisableForwarding: 'yes'

- separator: ' '
- uncomment: '# '
- key_ignore_case: True
- append_if_not_found: True

The same example, except for only ensuring with permitrootlogin is set correctly. Thus
being able to Therefore you can use the shorthand key and value parameters instead of
key_values.

sshd_config_harden:
file.keyvalue:

- name: /etc/ssh/sshd_config
- key: PermitRootLogin
- value: without-password
- separator: ' '
- uncomment: '# '
- key_ignore_case: True
- append_if_not_found: True

Note:
Notice how In the above example, the key is not matched case-sensitively – this way it will
correctly identify both 'PermitRootLogin' as well as 'permitrootlogin'.

The following example has a Zabbix configuration file with many defaults, where you only want
to keep track of two of the fields:

Configure Zabbix Agent:
file.keyvalue:

- name: /etc/zabbix/zabbix_agent2.conf
- key_values:

Server: zabbix
Hostname: {{ salt.grains.get('id') }}

- prepend_if_not_found: True
- count: -1

salt.states.file.line(name, content=None,match=None,mode=None, location=None,

before=None, after=None, show_changes=True, backup=False, quiet=False, indent=True,

create=False, user=None, group=None, file_mode=None)

Allows line-focused editing of a file.

New in version 2015.8.0.

Note:
file.line exists for historic reasons, and is not generally recommended. file.replace is
recommended.

file.line is most useful if you have single lines in a file, potentially a or config file that you
would like want to manage. It can remove, add, and replace lines.

name
Filesystem path to the file to be edited.

content
Content of the line. Allowed to be empty if mode=delete.

match
Match the target line for an action by a fragment of a string or regular expression.
If neither before nor after are provided, and match is also None, match falls back to the content
value.

mode
Defines how to edit a line. One of the following options is required:

● ensure
If a line does not exist, it will be added. If before and afte rare specified either zero lines,
or lines that contain the content line are allowed to be in between before and after. If
there are lines, and none of them match then it will produce an error.

● replace
If a line already exists, it will be replaced.

● delete
Delete the line, if found.

● insert
Nearly identical to ensure. If a line does not exist, it will be added.
The differences are that multiple (and non-matching) lines are allowed between before
and after, if they are specified. The line will always be inserted right before before.
insert also allows the use of location to specify that the line should be added at the
beginning or end of the file.

Note:

If mode=insert is used, at least one of the following options must also be defined: location,
before, or after. If location is used, it takes precedence over the other two options.

location
In mode=insert only, whether to place the content at the beginning or end of a the file. If
location is provided, before and after are ignored. Valid locations:

● start
Place the content at the beginning of the file.

● end
Place the content at the end of the file.

before
Regular expression or an exact case-sensitive fragment of the string. Will be tried as both a
regex and a part of the line. Must match exactly one line in the file. This value is only used in
ensure and insert modes. The content will be inserted just before this line, matching its indent
unless indent=False.

after
Regular expression or an exact case-sensitive fragment of the string. Will be tried as both a
regex and a part of the line. Must match exactly one line in the file. This value is only used in
ensure and insert modes. The content will be inserted directly after this line, unless before is
also provided. If before is not matched, indentation will match this line, unless indent=False.

show_changes
Outputs a unified diff of the old file and the new file. If False return a boolean if any changes
were made. Default is True.

Note:
Using this option will store two copies of the file in-memory (the original version and the edited
version) in order to generate the diff.

backup
Creates a backup of the original file with the extension:
"Year-Month-Day-Hour-Minutes-Seconds".

quiet
Do not raise any exceptions. Turns off notifications about exception errors. For example, when
the file to be edited does not exist. E.g. ignore the fact that the file that is tried to be edited does
not exist and nothing really happened.

indent
Keeps indentation with the previous line. This option is not considered when the delete mode is
specified. Default is True.

create
Creates an empty file if doesn't exist.
New in version 2016.11.0.

user
Specifies the user to own the file, this defaults to the user Salt is running as on the minion.
New in version 2016.11.0.

group
Specifies the group ownership set for the file, this defaults to the group Salt is running as on the
minion On Windows, this is ignored.
New in version 2016.11.0.

file_mode
Specifies the permissions to set on this file, aka 644, 0775, 4664. Not supported on Windows.
New in version 2016.11.0.

If an equal sign (=) appears in an argument to a Salt command, it is interpreted as a keyword
argument in the format of key=val. That processing can be bypassed in order to pass an equal
sign through to the remote shell command by manually specifying the kwarg:

update_config:
file.line:

- name: /etc/myconfig.conf
- mode: ensure
- content: my key = my value
- before: somekey.*?

Examples:
Here's a simple config file.
[some_config]
Some config file
this line will go away

here=False
away=True
goodybe=away

And an sls file:
remove_lines:

file.line:
- name: /some/file.conf
- mode: delete
- match: away

This will produce:
[some_config]
Some config file

here=False
away=True
goodbye=away

If that state is executed 2 more times, this will be the result:
[some_config]
Some config file

here=False

Given that original file with this state:
replace_things:

file.line:
- name: /some/file.conf
- mode: replace
- match: away
- content: here

Three passes will this state will result in this file:
[some_config]
Some config file
here

here=False
here
here

Each pass replacing the first line found.

Given this file:
insert after me
something
insert before me

The following state:
insert_a_line:

file.line:
- name: /some/file.txt
- mode: insert
- after: insert after me

- before: insert before me
- content: thrice

If this state is executed 3 times, the result will be:
insert after me
something
thrice
thrice
thrice
insert before me

If the mode is ensure instead, it will fail each time. To succeed, we need to remove the
incorrect line between before and after:
insert after me
insert before me

With an ensure mode, this will insert thrice the first time and make no changes for
subsequent calls. For something simple this is fine, but if you have instead blocks like this:
Begin SomeBlock

foo = bar
End

Begin AnotherBlock
another = value

End

And given this state:
ensure_someblock:

file.line:
- name: /some/file.conf
- mode: ensure
- after: Begin SomeBlock
- content: this = should be my content
- before: End

This will fail because there are multiple End lines. Without that problem, it still would fail
because there is a non-matching line, foo = bar. Ensure only allows either zero, or the
matching line present to be present in between before and after.

salt.states.file.managed(name, source=None, source_hash='',

source_hash_name=None, keep_source=True, user=None, group=None,mode=None, attrs=None,

template=None,makedirs=False, dir_mode=None, context=None, replace=True, defaults=None,

backup='', show_changes=True, create=True, contents=None, tmp_dir='', tmp_ext='',

contents_pillar=None, contents_grains=None, contents_newline=True, contents_delimiter=':',

encoding=None, encoding_errors='strict', allow_empty=True, follow_symlinks=True,

check_cmd=None, skip_verify=False, selinux=None,win_owner=None,win_perms=None,

win_deny_perms=None,win_inheritance=True,win_perms_reset=False, verify_ssl=True,

use_etag=False, **kwargs)

Manage a given file, this function allows for a file to be downloaded from the salt master and
potentially run through a templating system.

managed allows you to create or control the contents and metadata of a regular file. It
allows for a file to be downloaded from the Salt master and potentially run through a templating
system.

managed is useful when you wish to control the contents of the entire file, instead of
controlling a block (file.blockreplace), a comment (file.comment), or certain options (if a
common config, file.keyvalue).

name
The location of the file to manage as an absolute path.

source
The source file to download to the minion. This source file can be hosted on either the salt
master server (salt://), the salt minion local file system (/), or on an HTTP or FTP server
(http(s)://, ftp://).

Both HTTPS and HTTP are supported as well as downloading directly from Amazon S3
compatible URLs with both pre-configured and automatic IAM credentials. (see s3.get state
documentation) File retrieval from Openstack Swift object storage is supported via
swift://container/object_path URLs, see swift.get documentation.

The following are supported:
- HTTPS and HTTP
- Downloading directly from Amazon S3 compatible URLs with both pre-configured and

automatic IAM credentials (see s3.get state documentation)
- File retrieval from Openstack Swift object storage via swift://container/object_path URLs.

See swift.get documentation.

For files hosted on the Salt file server, if the file is located on the master in the directory named
spam, and is called eggs, the source string is salt://spam/eggs. (added newline)

If source is left blank or None (use ~ in YAML), the file will be created as an empty file and the
content will not be managed. This is also the case when a file already exists and the source is
undefined; the contents of the file will not be changed or managed. (added newline)

If source is left blank or None, please also set replaced to False to make your intention explicit.
(added newline)

If the file is hosted on a HTTP or FTP server then the source_hash argument is also required.
A list of sources can also be passed in to provide a default source and a set of fallbacks. The
first source in the list that is found to exist will be used and subsequent entries in the list will be
ignored. Source list functionality only supports local files and remote files hosted on the Salt
master server or retrievable via HTTP, HTTPS, or FTP.

file_override_example:
file.managed:

- source:
- salt://file_that_does_not_exist
- salt://file_that_exists

source_hash
This can be one of the following:

1. A source hash string
2. The URI of a file that contains source hash strings

The function accepts the first encountered long unbroken alphanumeric string of correct length
as a valid hash, in order from most secure to least secure:

Type Length
====== ======
sha512 128
sha384 96
sha256 64
sha224 56
sha1 40
md5 32

Using a Source Hash File
The file can contain several checksums for several files. Each line must contain both the file
name and the hash. If no file name is matched, the first hash encountered will be used,
otherwise the most secure hash with the correct source file name will be used.

When using a source hash file the source_hash argument needs to be a url. The standard
download urls are supported, ftp, http, Salt etc:

Example:

tomdroid-src-0.7.3.tar.gz:
file.managed:

- name: /tmp/tomdroid-src-0.7.3.tar.gz
- source:

https://launchpad.net/tomdroid/beta/0.7.3/+download/tomdroid-
src-0.7.3.tar.gz

- source_hash:
https://launchpad.net/tomdroid/beta/0.7.3/+download/tomdroid-
src-0.7.3.hash

The following lines are all supported formats:
/etc/rc.conf ef6e82e4006dee563d98ada2a2a80a27
sha254c8525aee419eb649f0233be91c151178b30f0dff8ebbdcc8de71b1d5c8bcc06
a /etc/resolv.conf
ead48423703509d37c4a90e6a0d53e143b6fc268

Debian file type *.dsc files are also supported.

Inserting the Source Hash in the SLS Data
The source_hash can be specified as a simple checksum, like so:
tomdroid-src-0.7.3.tar.gz:

file.managed:
- name: /tmp/tomdroid-src-0.7.3.tar.gz
- source:

https://launchpad.net/tomdroid/beta/0.7.3/+download/tomdroid-src-0.7.
3.tar.gz

- source_hash: 79eef25f9b0b2c642c62b7f737d4f53f

Note:
Releases prior to 2016.11.0 must also include the hash type, like as in the below example:
tomdroid-src-0.7.3.tar.gz:

file.managed:
- name: /tmp/tomdroid-src-0.7.3.tar.gz
- source:

https://launchpad.net/tomdroid/beta/0.7.3/+download/tomdroid-src-0.7.
3.tar.gz

- source_hash: md5=79eef25f9b0b2c642c62b7f737d4f53f

Known issues:

If the remote server URL has the hash file as an apparent sub-directory of the source file, the
module will discover that it has already cached a directory where a file should be cached.

For example:
tomdroid-src-0.7.3.tar.gz:

file.managed:
- name: /tmp/tomdroid-src-0.7.3.tar.gz
- source:

https://launchpad.net/tomdroid/beta/0.7.3/+download/tomdroid-src-0.7.
3.tar.gz

- source_hash:
https://launchpad.net/tomdroid/beta/0.7.3/+download/tomdroid-src-0.7.
3.tar.gz/+md5

source_hash_name
When source_hash refers to a hash file, Salt will try to find the correct hash by matching the
filename/URI associated with that hash. By default, Salt will look for the filename being
managed. When managing a file at path /tmp/foo.txt, then the following line in a hash file
would match:
acbd18db4cc2f85cedef654fccc4a4d8 foo.txt

However, sometimes a hash file will include multiple similar paths:
37b51d194a7513e45b56f6524f2d51f2 ./dir1/foo.txt
acbd18db4cc2f85cedef654fccc4a4d8 ./dir2/foo.txt
73feffa4b7f6bb68e44cf984c85f6e88 ./dir3/foo.txt

In cases like this, Salt may match the incorrect hash. This argument can be used to tell Salt
which filename to match, to ensure that the correct hash is identified. (newline added)

For example:
/tmp/foo.txt:

file.managed:
- source: https://mydomain.tld/dir2/foo.txt
- source_hash: https://mydomain.tld/hashes
- source_hash_name: ./dir2/foo.txt

Note:
This argument must contain the full filename entry from the checksum file, as this argument is
meant to disambiguate matches for multiple files that have the same basename. So, in the
example above, simply using foo.txt would not match.
New in version 2016.3.5.

keep_source

Set to False to discard the cached copy of the source file once the state completes. This can
be useful for larger files to keep them from taking up space in the minion cache. However, keep
in mind that discarding the source file will result in the state needing to re-download the source
file if the state is run again.
New in version 2017.7.3.

user
The user to who will own the file. this Defaults to the user Salt is running as on the minion.

group
The group ownership set for the file. this Defaults to the group Salt is running as on the minion.
On Windows, this is ignored.

mode
The permissions to set on this file, e.g. 644, 0775, or 4664.
The default mode for new files and directories corresponds to umask of the Salt process. The
mode of existing files and directories will only be changed if mode is specified.

Note:
This option is not supported on Windows.

Changed in version 2016.11.0: This option can be set to keep, and Salt will keep the mode from
the Salt fileserver. This is only supported when the source URL begins with salt://, or for files
local to the minion. Because the source option cannot be used with any of the contents options,
setting the mode to keep is also incompatible with the contents options.

Caution:
keep does not work with salt-ssh.
As a consequence of how the files are transferred to the minion, and the inability to connect
back to the master with salt-ssh, Salt is unable to stat the file as it exists on the fileserver and
thus cannot mirror the mode on the salt-ssh minion.

attrs
The attributes to have on this file, e.g. a, i. The attributes can be any or a combination of the
following characters: aAcCdDeijPsStTu.

Note:
This option is not supported on Windows.
New in version 2018.3.0.

template
If this setting is applied, the named templating engine will be used to render the downloaded file.
The following templates are supported:

● cheetah

https://docs.saltproject.io/en/latest/ref/renderers/all/salt.renderers.cheetah.html#module-salt.renderers.cheetah

● genshi
● jinja
● mako
● py
● wempy

makedirs
If set to True, then the parent directories will be created to facilitate the creation of the named
file. If False, and the parent directory of the destination file doesn't exist, the state will fail.

dir_mode
If directories are to be created, passing this option specifies the permissions for those
directories. If this is not set, directories will be assigned permissions by adding the execute bit to
the mode of the files.

The default mode for new files and directories corresponds to umask of Salt process. For
existing files and directories it's not enforced.

replace
If set to False and the file already exists, the file will not be modified even if changes would
otherwise be made. Permissions and ownership will still be enforced, however.

context
Overrides default context variables passed to the template.

defaults
Default context passed to the template.

backup
Overrides the default backup mode for this specific file. See backup_mode documentation for
more details.

show_changes
Output a unified diff of the old file and the new file. If False return a boolean if any changes
were made.

create
If set to False, then the file will only be managed if the file already exists on the system.

contents
Specify the contents of the file. Cannot be used in combination with source. Ignores hashes
and does not use a templating engine. This value can be either a single string, a multiline YAML

https://docs.saltproject.io/en/latest/ref/renderers/all/salt.renderers.genshi.html#module-salt.renderers.genshi
https://docs.saltproject.io/en/latest/ref/renderers/all/salt.renderers.jinja.html#module-salt.renderers.jinja
https://docs.saltproject.io/en/latest/ref/renderers/all/salt.renderers.mako.html#module-salt.renderers.mako
https://docs.saltproject.io/en/latest/ref/renderers/all/salt.renderers.py.html#module-salt.renderers.py
https://docs.saltproject.io/en/latest/ref/renderers/all/salt.renderers.wempy.html#module-salt.renderers.wempy
https://docs.saltproject.io/en/latest/ref/states/backup_mode.html#file-state-backups

string or a list of strings. If a list of strings, then the strings will be joined together with newlines
in the resulting file.

For example, the below two example states would result in identical file contents:
/path/to/file1:

file.managed:
- contents:

- This is line 1
- This is line 2

/path/to/file2:
file.managed:

- contents: |
This is line 1
This is line 2

contents_pillar
New in version 0.17.0.

Changed in version 2016.11.0: contents_pillar can also be a list, and the pillars will be
concatenated together to form one file.

Operates like contents, but draws from a value stored in pillar, using the pillar path syntax used
in pillar.get. This is useful when the pillar value contains newlines, as referencing a pillar
variable using a jinja/mako template can result in YAML formatting issues due to the newlines
causing indentation mismatches. (newline added)

For example, the following could be used to deploy an SSH private key:
/home/deployer/.ssh/id_rsa:

file.managed:
- user: deployer
- group: deployer
- mode: 600
- attrs: a
- contents_pillar: userdata:deployer:id_rsa

This would populate /home/deployer/.ssh/id_rsa with the contents of
pillar['userdata']['deployer']['id_rsa']. An example of this pillar setup would
be like so:

Here is an example of this pillar setup:
userdata:

deployer:
id_rsa: |

https://docs.saltproject.io/en/latest/ref/modules/all/salt.modules.pillar.html#salt.modules.pillar.get

-----BEGIN RSA PRIVATE KEY-----

MIIEowIBAAKCAQEAoQiwO3JhBquPAalQF9qP1lLZNXVjYMIswrMe2HcWUVBgh+vY

U7sCwx/dH6+VvNwmCoqmNnP+8gTPKGl1vgAObJAnMT623dMXjVKwnEagZPRJIxDy

B/HaAre9euNiY3LvIzBTWRSeMfT+rWvIKVBpvwlgGrfgz70m0pqxu+UyFbAGLin+
GpxzZAMaFpZw4sSbIlRuissXZj/sHpQb8p9M5IeO4Z3rjkCP1cxI
-----END RSA PRIVATE KEY-----

Note:
The private key above is shortened to keep the example brief, but shows how to do multiline
strings in YAML. The key is followed by a pipe character, and the multiline string is indented two
more spaces.

To avoid the hassle of creating an indented multiline YAML string, the file_tree external pillar can
be used instead. However, this will not work for binary files in Salt releases before 2015.8.4.

contents_grains
New in version 2014.7.0.
Operates like in the same way as contents, but draws from a value stored in grains, using the
grains path syntax used in grains.get. This functionality works similarly to contents_pillar,
but with grains.

For example, the following could be used to deploy a "message of the day" file:
write_motd:

file.managed:
- name: /etc/motd
- contents_grains: motd

This would populate /etc/motd file with the contents of the motd grain. The motd grain is
not a default grain, and would need to be set prior to running the state:
salt '*' grains.set motd 'Welcome! This system is managed by Salt.'

contents_newline
New in version 2014.7.0. Changed in version 2015.8.4: This option is now ignored if the
contents being deployed contain binary data. If True, files managed using contents,
contents_pillar, or contents_grains will have a newline added to the end of the file if
one is not present. Setting this option to False will ensure the final line, or entry, does not
contain a new line. If the last line or entry in the file does contain a new line already, this option
will not remove it.

contents_delimiter
New in version 2015.8.4.

https://docs.saltproject.io/en/latest/ref/pillar/all/salt.pillar.file_tree.html#module-salt.pillar.file_tree
https://docs.saltproject.io/en/latest/ref/modules/all/salt.modules.grains.html#salt.modules.grains.get

Can be used to specify an alternate delimiter for contents_pillar or contents_grains.
This delimiter will be passed through to pillar.get or grains.get when retrieving the
contents.

encoding
If specified, then the specified encoding will be used. Otherwise, the file will be encoded using
the system locale (usually UTF-8). See
https://docs.python.org/3/library/codecs.html#standard-encodings for the list of available
encodings.

New in version 2017.7.0.

encoding_errors
Error encoding scheme. Default is `'strict'`. See
https://docs.python.org/2/library/codecs.html#codec-base-classes for the list of available
schemes.

New in version 2017.7.0.

allow_empty
New in version 2015.8.4.

If set to False, then the state will fail if the contents specified by contents_pillar or
contents_grains are empty.

follow_symlinks
New in version 2014.7.0.
If the desired path is a symlink, follow it and make changes to the file to which the symlink
points.

check_cmd
New in version 2014.7.0.
The specified command will be run with an appended argument of a temporary file containing
the new managed contents. If the command exits with a zero status the new managed contents
will be written to the managed destination. If the command exits with a nonzero exit code, the
state will fail and no changes will be made to the file.

For example, the following could be used to verify sudoers before making changes:
/etc/sudoers:

file.managed:
- user: root
- group: root
- mode: 0440

https://docs.saltproject.io/en/latest/ref/modules/all/salt.modules.pillar.html#salt.modules.pillar.get
https://docs.saltproject.io/en/latest/ref/modules/all/salt.modules.grains.html#salt.modules.grains.get
https://docs.python.org/3/library/codecs.html#standard-encodings
https://docs.python.org/2/library/codecs.html#codec-base-classes

- attrs: i
- source: salt://sudoers/files/sudoers.jinja
- template: jinja
- check_cmd: /usr/sbin/visudo -c -f

NOTE: This check_cmd functions differently than the
requisitecheck_cmd.

tmp_dir
Directory for temp file created by check_cmd. Useful for checkers dependent on config file
location (e.g. daemons restricted to their own config directories by an apparmor profile).
/etc/dhcp/dhcpd.conf:
file.managed:

- user: root
- group: root
- mode: 0755
- tmp_dir: '/etc/dhcp'
- contents: "# Managed by Salt"
- check_cmd: dhcpd -t -cf

tmp_ext
Suffix for temp file created by check_cmd. Useful for checkers dependent on config file
extension (e.g. the init-checkconf upstart config checker).
/etc/init/test.conf:
file.managed:

- user: root
- group: root
- mode: 0440
- tmp_ext: '.conf'
- contents:

- 'description "Salt Minion"'
- 'start on started mountall'
- 'stop on shutdown'
- 'respawn'
- 'exec salt-minion'

- check_cmd: init-checkconf -f

skip_verify
If True, hash verification of remote file sources (http://, https://, ftp://) will be skipped, and the
source_hash argument will be ignored.
New in version 2016.3.0.

selinux
Allows setting the selinux user, role, type, and range of a managed file

/tmp/selinux.test
file.managed:

- user: root
- selinux:

seuser: system_u
serole: object_r
setype: system_conf_t
seranage: s0

New in version 3000.

win_owner
The owner of the directory. If this is not passed, user will be used. If user is not passed, the
account under which Salt is running will be used.
New in version 2017.7.0.

win_perms
A dictionary containing permissions to grant and their propagation. For example:
{'Administrators': {'perms': 'full_control'}} Can be a single basic perm or a
list of advanced perms. perms must be specified. applies_to does not apply to file objects.
New in version 2017.7.0.

win_deny_perms
A dictionary containing permissions to deny and their propagation. For example:
{'Administrators': {'perms': 'full_control'}} Can be a single basic perm or a
list of advanced perms. perms must be specified. applies_to does not apply to file objects.
New in version 2017.7.0.

win_inheritance
Set to True to inherit permissions from the parent directory, False not to to not inherit
permission.
New in version 2017.7.0.

win_perms_reset
If True the existing DACL will be cleared and replaced with the settings defined in this function.
If False, new entries will be appended to the existing DACL. Default is False.
New in version 2018.3.0.

Here's an example using the above win_* parameters:
create_config_file:

file.managed:
- name: C:\config\settings.cfg
- source: salt://settings.cfg
- win_owner: Administrators

- win_perms:
Basic Permissions
dev_ops:

perms: full_control
List of advanced permissions
appuser:

perms:
- read_attributes
- read_ea
- create_folders
- read_permissions

joe_snuffy:
perms: read

- win_deny_perms:
fred_snuffy:

perms: full_control
- win_inheritance: False

verify_ssl
If False, remote https file sources (https://) and source_hash will not attempt to validate the
servers certificate. Default is True.
New in version 3002.

use_etag
If True, remote http/https file sources will attempt to use the ETag header to determine if the
remote file needs to be downloaded. This provides a lightweight mechanism for promptly
refreshing files changed on a web server without requiring a full hash comparison via the
source_hash parameter.
New in version 3005.

salt.states.file.missing(name, **kwargs)

Verify Verifies that the named file or directory is missing. This returns True only if the named file

is missing but does not remove the file if it is present.

Tip:
Useful if you don’t want to write jinja. Use absent if you want to remove the file or directory,
and use an execution module if you just want to check.

name
Absolute path which must NOT exist.

salt.states.file.mknod(name, ntype,major=0,minor=0, user=None, group=None,

mode='0600')

For creating special devices in Linux, such as block devices and hardware links. Creates a
special file similar to the 'nix mknod command.

Note:
mknod is rarely used, and is typically used if creating a fifo. Creating special devices is
restricted, and usually only done as root. If the state is executed as none other than root on a
minion, you may receive a permission error.

The supported device types are p (fifo pipe), c (character device), and b (block device).
Provide the major and minor numbers when specifying a character device or block device. A fifo
pipe does not require this information. The command will create the necessary dirs if needed. If
a file of the same name not of the same type/major/minor exists, it will not be overwritten or
unlinked (deleted).
(newline)
This is logically in place as a safety measure because you can really shoot yourself in the foot
here and it is the behavior of 'nix mknod. It is also important to note that not just anyone can
create special devices. Usually this is only done as root. If the state is executed as none other
than root on a minion, you may receive a permission error.

name
Name of the file.

ntype
Node type 'p' (fifo pipe), 'c' (character device), or 'b' (block device).

major
Major number of the device does not apply to a fifo pipe.

minor
Minor number of the device does not apply to a fifo pipe.

user
owning user User who owns of the device/pipe.

group
owning group Group that owns of the device/pipe

mode
Permissions on the device/pipe.

Usage:
Examples:

New hdd:
File.mknod:

- name: /dev/fifo
- user: root
- group: root
- mode: 660
- ntype: p

/dev/chr:
file.mknod:

- ntype: c
- major: 180
- minor: 31
- user: root
- group: root
- mode: 660

/dev/blk:
file.mknod:

- ntype: b
- major: 8
- minor: 999
- user: root
- group: root
- mode: 660

/dev/fifo:
file.mknod:

- ntype: p
- user: root
- group: root
- mode: 660

New in version 0.17.0.

salt.states.file.mod_beacon(name, **kwargs)

This is an internal function, not for use by end users. Creates a beacon to monitor a file based
on a beacon state argument. It is used so that files can automatically add beacons based on
state files. For further information, see the beacon documentation and
https://github.com/saltstack/salt-enhancement-proposals/pull/40 .

Note:
This state exists to support special handling of the beacon state argument for supported state
functions. It should not be called directly.

salt.states.file.mod_run_check_cmd(cmd, filename, **check_cmd_opts)

This is an internal function, not for use by end users. Executes the check_cmd logic.
Mod_run_check_cmd is used internally by other states.

Returns a result dict if check_cmd succeeds (check_cmd == 0), otherwise returns True.

This internal function is used when check_cmd is used with a file module for validating files.
Also useful if commands need to be issued that can be used to check, validate, and use such as
visudo for sudoers.

Example:

Setup sudo:
File.managed:

- name: /etc/sudoers
- source: salt://sudo/files/sudoers
- user: root
- group: root
- mode: 440
- check_cmd: visudo -c -s -f

salt.states.file.not_cached(name, saltenv='base')

https://docs.saltproject.io/en/latest/topics/beacons/#configuring-beacons
https://github.com/saltstack/salt-enhancement-proposals/pull/40

New in version 2017.7.3.

Internal function, not for end users. Ensures that a file is not present in the minion's cache,
deleting it if found. This state is primarily invoked by other states to ensure that a fresh copy is
fetched.

name
The URL of the file to be removed from cache. To remove a file from cache in an environment
other than base, either use the saltenv argument or include the saltenv in the URL
(e.g.salt://path/to/file.conf?saltenv=dev).

Note:
A list of URLs is not supported, this must be a single URL. If a local file is passed here, the state
will take no action.

saltenv
Used to specify the environment from which to download a file from the Salt fileserver (i.e. those
with salt:// URL).

salt.states.file.patch(name, source=None, source_hash=None,

source_hash_name=None, skip_verify=False, template=None, context=None, defaults=None,

options='', reject_file=None, strip=None, saltenv=None, **kwargs)

Ensures that a patch has been applied to the specified file or directory.

Changed in version 2019.2.0: The hash and dry_run_first options are now ignored, as the
logic which determines whether or not the patch has already been applied no longer requires
them. Additionally, this state now Supports patch files that modify more than one file. To use
these sort of patches, specify a directory (and, if necessary, the strip option) instead of a file.

Note:
A suitable patch executable must be available on the minion. Also, keep in mind that The
pre-check this state does to determine whether or not changes need to be made will create a
temp file and send all patch output to that file. This means that, Therefore in the event that the
patch would not have applied cleanly, the comment included in the state results will reference a
temp file that will no longer exist once the state finishes running.

name
The file or directory to which the patch should be applied.

source
The patch file to apply.
Changed in version 2019.2.0: The source can now be from any file source supported by Salt
(salt://, http://, https://, ftp://, etc.). Templating is also now supported.

source_hash
Works the same way as in file.managed.
New in version 2019.2.0.

source_hash_name
Works the same way as in file.managed.
New in version 2019.2.0.

skip_verify
Works the same way as in file.managed.
New in version 2019.2.0.

template
Works the same way as in file.managed.
New in version 2019.2.0.

context
Works the same way as in file.managed.
New in version 2019.2.0.

defaults
Works the same way as in file.managed.
New in version 2019.2.0.

options
Extra options to pass to patch. This should not be necessary in most cases.

Note:
For best results, short opts should be separate from one another. The -N and -r, and -o
options are used internally by this state and cannot be used here. Additionally, instead of using
-pN or --strip=N, use the strip option documented below.

reject_file
If specified, any rejected hunks will be written to this file. If not specified, then they will be written
to a temp file which will be deleted when the state finishes running.

important
The parent directory must exist. Also, this will overwrite the file if it is already present.
New in version 2019.2.0.

https://docs.saltproject.io/en/latest/ref/states/all/salt.states.file.html#salt.states.file.managed
https://docs.saltproject.io/en/latest/ref/states/all/salt.states.file.html#salt.states.file.managed
https://docs.saltproject.io/en/latest/ref/states/all/salt.states.file.html#salt.states.file.managed
https://docs.saltproject.io/en/latest/ref/states/all/salt.states.file.html#salt.states.file.managed
https://docs.saltproject.io/en/latest/ref/states/all/salt.states.file.html#salt.states.file.managed
https://docs.saltproject.io/en/latest/ref/states/all/salt.states.file.html#salt.states.file.managed

strip
Number of directories to strip from paths in the patch file. For example, using the below SLS
would instruct Salt to use -p1 when applying the patch:
/etc/myfile.conf:

file.patch:
- source: salt://myfile.patch
- strip: 1

New in version 2019.2.0: In previous versions, -p1 would need to be passed as part of the
options value.

saltenv
Specify the environment from which to retrieve the patch file indicated by the source parameter.
If not provided, this defaults to the environment from which the state is being executed.

Note:
Ignored when the patch file is from a non-salt:// source.

Usage Example:
Equivalent to ``patch --forward /opt/myfile.txt myfile.patch``
/opt/myfile.txt:

file.patch:
- source: salt://myfile.patch

salt.states.file.prepend(name, text=None,makedirs=False, source=None,

source_hash=None, template='jinja', sources=None, source_hashes=None, defaults=None,
context=None, header=None)
Ensures that some specified text appears at the beginning of a file.

The text will not be prepended again if it already exists in the file. You may specify a single line
of text or a list of lines to append.

name
The location of the file to append to which the new text will be appended.

text
The text to be appended. which Text can be a single string or a list of strings.

makedirs
If the file is located in a path without a parent directory, then the state will fail. If makedirs is
set to True, then the parent directories will be created to facilitate the creation of the named file.
Defaults to False.

source
A single source file to append. This source file can be hosted on either the Salt master server,
or on an HTTP or FTP server. Both HTTPS and HTTP are supported as well as downloading
directly from Amazon S3 compatible URLs with both pre-configured and automatic IAM
credentials (see s3.get state documentation). File retrieval from Openstack Swift object storage
is supported via swift://container/object_path URLs (see swift.get documentation).

For files hosted on the salt file server, if the file is located on the master in the directory named
spam, and is called eggs, the source string is salt://spam/eggs.

If the file is hosted on an HTTP or FTP server, the source_hash argument is also required.

source_hash
This can be one of the following:

1. A source hash string
2. The URI of a file that contains source hash strings

The function accepts the first encountered long unbroken alphanumeric string of correct length
as a valid hash, in order from most secure to least secure:

Type Length
====== ======
sha512 128
sha384 96
sha256 64
sha224 56
sha1 40
md5 32

See the source_hash parameter description for file.managed function for more details and
examples.

template
The named templating engine will be used to render the appended-to file. Defaults to jinja.

The following templates are supported:
● cheetah
● genshi
● jinja
● mako
● py
● wempy

https://docs.saltproject.io/en/latest/ref/states/all/salt.states.file.html#salt.states.file.managed
https://docs.saltproject.io/en/latest/ref/renderers/all/salt.renderers.cheetah.html#module-salt.renderers.cheetah
https://docs.saltproject.io/en/latest/ref/renderers/all/salt.renderers.genshi.html#module-salt.renderers.genshi
https://docs.saltproject.io/en/latest/ref/renderers/all/salt.renderers.jinja.html#module-salt.renderers.jinja
https://docs.saltproject.io/en/latest/ref/renderers/all/salt.renderers.mako.html#module-salt.renderers.mako
https://docs.saltproject.io/en/latest/ref/renderers/all/salt.renderers.py.html#module-salt.renderers.py
https://docs.saltproject.io/en/latest/ref/renderers/all/salt.renderers.wempy.html#module-salt.renderers.wempy

sources
A list of source files to append. If the files are hosted on an HTTP or FTP server, the
source_hashes argument is also required.

source_hashes
A list of source_hashes corresponding to the sources list specified in the sources
argument.

defaults
Default context passed to the template.

context
Overrides default context variables passed to the template.

ignore_whitespace
New in version 2015.8.4.
Spaces and Tabs in text are ignored by default, when searching for the appending content, one
space or multiple tabs are the same for Salt. Set this option to False if you want to change this
behavior.

Multi-line example:
/etc/motd:

file.prepend:
- text: |
Thou hadst better eat salt with the Philosophers of Greece,

than sugar with the Courtiers of Italy.
- Benjamin Franklin

Multiple lines of text:
/etc/motd:

file.prepend:
- text:

- Trust no one unless you have eaten much salt with him.
- "Salt is born of the purest of parents: the sun and the sea."

Optionally, require the text to appear exactly as specified (order and position). Combine with
multi-line or multiple lines of input.

/etc/motd:
file.prepend:

- header: True
- text:

- This will be the very first line in the file.
- The 2nd line, regardless of duplicates elsewhere in the file.

- These will be written anew if they do not appear verbatim.

Gather text from multiple template files:
/etc/motd:

file:
- prepend
- template: jinja
- sources:

- salt://motd/devops-messages.tmpl
- salt://motd/hr-messages.tmpl
- salt://motd/general-messages.tmpl

New in version 2014.7.0.

salt.states.file.recurse(name, source, keep_source=True, clean=False, require=None,

user=None, group=None, dir_mode=None, file_mode=None, sym_mode=None, template=None,

context=None, replace=True, defaults=None, include_empty=False, backup='', include_pat=None,

exclude_pat=None,maxdepth=None, keep_symlinks=False, force_symlinks=False,

win_owner=None,win_perms=None,win_deny_perms=None,win_inheritance=True, **kwargs)

Recurse through a subdirectory on the master and copy said subdirectory over to the specified
path. Copies a directory from the salt master fileserver to the minion.

name
The directory to set the recursion in.

source
The source directory. This directory is located on the Salt master file server and is specified
with the salt:// protocol. If the directory is located on the master in the directory named spam,
and is called eggs, the source string is salt://spam/eggs

keep_source
Set to False to discard the cached copy of the source file once the state completes. This can
be useful for larger files to keep them from taking up space in the minion cache. However, keep
in mind that Discarding the source file will result in the state needing to re-download the source
file if the state is run again.
New in version 2017.7.3.

clean

Make sure that only files that are set up by Salt and required by this function are kept. If this
option is set then everything in this directory will be deleted unless it is required.

require
Require other resources such as packages or files.

user
The user to who will own the directory. This defaults to the user Salt is running as on the minion.

group
The group ownership set for the directory. This defaults to the group Salt is running as on the
minion. On Windows, this is ignored.

dir_mode
The permissions mode to set on any directories created.
The default mode for new files and directories corresponds to umask of Salt process. For
existing files and directories it's not enforced.

Note:
This option is not supported on Windows.

file_mode
The permissions mode to set on for any files created.
The default mode for new files and directories corresponds to umask of Salt process. For
existing files and directories it's not enforced.

Note:
This option is not supported on Windows.
Changed in version 2016.11.0: This option can be set to keep, and Salt will keep the mode from
the Salt fileserver. This is only supported when the source URL begins with salt://, or for files
local to the minion. Because the source option cannot be used with any of the contents options,
setting the mode to keep is also incompatible with the contents options.

sym_mode
The permissions mode to set on for any symlink created.
The default mode for new files and directories corresponds to umask of Salt process. For
existing files and directories it's not enforced.

Note:
This option is not supported on Windows.

template
If this setting is applied, the named templating engine will be used to render the downloaded file.
The following templates are supported:

- cheetah
- genshi
- jinja
- mako
- py
- wempy

Note:
The template option is required when recursively applying templates.

replace
If set to False and the file already exists, the file will not be modified even if changes would
otherwise be made. Permissions and ownership will still be enforced, however.

context
Overrides default context variables passed to the template.

defaults
Default context passed to the template.

include_empty
Set this to True if empty directories should also be created (default is False)

backup
Overrides the default backup mode for all replaced files. See backup_mode documentation for
more details.

include_pat
When copying, include only this pattern, or list of patterns, from the source. Default is glob
match; if prefixed with 'E@', then regexp match.
Example:
- include_pat: hello* :: glob matches 'hello01', 'hello02'

... but not 'otherhello'
- include_pat: E@hello :: regexp matches 'otherhello',

'hello01' ...

Changed in version 3001: List patterns are now supported
- include_pat:

- hello01
- hello02

exclude_pat

https://docs.saltproject.io/en/latest/ref/renderers/all/salt.renderers.cheetah.html#module-salt.renderers.cheetah
https://docs.saltproject.io/en/latest/ref/renderers/all/salt.renderers.genshi.html#module-salt.renderers.genshi
https://docs.saltproject.io/en/latest/ref/renderers/all/salt.renderers.jinja.html#module-salt.renderers.jinja
https://docs.saltproject.io/en/latest/ref/renderers/all/salt.renderers.mako.html#module-salt.renderers.mako
https://docs.saltproject.io/en/latest/ref/renderers/all/salt.renderers.py.html#module-salt.renderers.py
https://docs.saltproject.io/en/latest/ref/renderers/all/salt.renderers.wempy.html#module-salt.renderers.wempy
https://docs.saltproject.io/en/latest/ref/states/backup_mode.html#file-state-backups

Exclude this pattern, or list of patterns, from the source when copying. If both include_pat
and exclude_pat are supplied, then it will apply conditions cumulatively. i.e. first select based
on include_pat, and then within that result apply exclude_pat.
Also, when 'clean=True', exclude this pattern from the removal list and preserve in the
destination.

For example:
- exclude_pat: APPDATA* :: glob matches APPDATA.01,

APPDATA.02,.. for exclusion
- exclude_pat: E@(APPDATA)|(TEMPDATA) :: regexp matches APPDATA

or TEMPDATA for exclusion

Changed in version 3001: Example: List patterns are now supported
- exclude_pat:

- APPDATA.01
- APPDATA.02

maxdepth
When copying, only copy paths which are of depth maxdepth from the source path.

For example:
- maxdepth: 0 :: Only include files located in the source

directory
- maxdepth: 1 :: Only include files located in the source

or immediate subdirectories

keep_symlinks
Keep symlinks when copying from the source. This option will cause the copy operation to
terminate at the symlink. If desired behavior is similar to rsync, then set this to True.

force_symlinks
Force symlink creation. This option will force the symlink creation. If a file or directory is
obstructing symlink creation it will be recursively removed so that symlink creation can proceed.
This option is usually not needed except in special circumstances.

win_owner
The owner of the symlink and directories if makedirs is True. If this is not passed, user will
be used. If user is not passed, the account under which Salt is running will be used.
New in version 2017.7.7.

win_perms
A dictionary containing permissions to grant.
New in version 2017.7.7.

win_deny_perms
A dictionary containing permissions to deny.
New in version 2017.7.7.

win_inheritance
Use True to inherit permissions from parent, otherwise use False.
New in version 2017.7.7.

salt.states.file.rename(name, source, force=False,makedirs=False, **kwargs)

If the source file exists on the system, rename it to as the named file. The named file will not be
overwritten if it already exists unless the force option is set to True.

name
The location of the file to rename to be renamed.

source
The location of the file to move to the location specified with by name.

force
If the target location is present then the file will not be moved,. Specify "force: True" to
overwrite the target file.

makedirs
If the target subdirectories don't exist create them
Create subdirectories if they don’t exist.

salt.states.file.replace(name, pattern, repl, count=0, flags=8, bufsize=1,

append_if_not_found=False, prepend_if_not_found=False, not_found_content=None,

backup='.bak', show_changes=True, ignore_if_missing=False, backslash_literal=False)

Maintain an edit in a file.

New in version 0.17.0.

name
Filesystem path to the file to be edited. If a symlink is specified, it will be resolved to its target.

pattern
A regular expression, to be matched using Python's re.search().

Note:
If you need to match a literal string that contains regex special characters, you may want to use
Salt's custom Jinja filter, regex_escape.

{{ 'http://example.com?foo=bar%20baz' | regex_escape }}

repl
The replacement text.

count
Maximum number of pattern occurrences to be replaced. Defaults to 0. If count is a positive
integer n, no more than n occurrences will be replaced, otherwise all occurrences will be
replaced.

flags
A list of flags defined in the re module documentation from the Python standard library. Each list
item should be a string that will correlate to the human-friendly flag name. E.g. For example,
['IGNORECASE', 'MULTILINE']. Optionally, flags may be an int, with a value
corresponding to the XOR (|) of all the desired flags. Defaults to 8 (which equates to
['MULTILINE']).

Note:
file.replace reads the entire file as a string to support multiline regex patterns. Therefore,
when using anchors such as ^ or $ in the pattern, those anchors may be relative to the line OR
relative to the file. The default for file.replace is to treat anchors as relative to the line,
which is implemented by setting the default value of flags to ['MULTILINE']. When
overriding the default value for flags, if 'MULTILINE' is not present then anchors will be
relative to the file. If the desired behavior is for anchors to be relative to the line, then simply add
'MULTILINE' to the list of flags.

bufsize

https://docs.python.org/3/library/re.html#re.search

Specifies how much of the file to buffer into memory at once. The default value 1 processes one
line at a time. The special value file may be specified which will read the entire file into
memory before processing.

append_if_not_found
If set to True, and pattern is not found, then the content will be appended to the file.
New in version 2014.7.0.

prepend_if_not_found
If set to True and pattern is not found, then the content will be prepended to the file.
New in version 2014.7.0.

not_found_content
Content to use for append/prepend if not found. If None (default), uses repl. Useful when
repl uses references to group in pattern.
New in version 2014.7.0.

backup
The file extension to use for a backup of the file before editing. Set to False to skip making a
backup.

show_changes
Output a unified diff of the old file and the new file. If False, return a boolean if any changes
were made. Returns a boolean or a string.

ignore_if_missing
New in version 2016.3.4.
Controls what to do if the file is missing. If set to False, the state will display an error raised by
the execution module. If set to True, the state will simply report no changes.

backslash_literal
New in version 2016.11.7. Interpret backslashes as literal backslashes for the repl and not
escape without escaping characters. This will help when using append/prepend so that the
backslashes are not interpreted for the repl on the second run of the state.

For complex regex patterns, it can be useful to avoid the need for complex quoting and escape
sequences by making use of YAML's multiline string syntax:

complex_search_and_replace:
file.replace:

<...snip...>
- pattern: |

CentOS \(2.6.32[^\\n]+\\n\s+root[^\\n]+\\n\)+

Note:
When using YAML multiline string syntax in pattern:,, make sure to also use that syntax in
the repl: part, or you might loose lose line feeds.

When regex capture groups are used in pattern:, their captured value is available for reuse in
the repl: part as a backreference (ex. \1).

add_login_group_to_winbind_ssh_access_list:
file.replace:

- name: '/etc/security/pam_winbind.conf'
- pattern: '^(require_membership_of =)(.*)$'
- repl: '\1\2,append-new-group-to-line'

Note:
The file.replace state uses Python's re module. For more advanced options, see
https://docs.python.org/2/library/re.html

salt.states.file.retention_schedule(name, retain,

strptime_format=None, timezone=None)

Applies retention scheduling to backup storage directory.
New in version 2016.11.0.

name
The filesystem path to the directory containing backups to be managed.

retain
Deletes the backups except for other than the ones we you want to keep. The N below should
be an integer but may also be the special value of all, which keeps all files matching the
criteria. All of the retain options default to None, which means to not keep files based on this
criteria.

● most_recent N
Keep the most recent N files.

● first_of_hour N
For the last N hours from now, keep the first file after the hour.

● first_of_day N
For the last N days from now, keep the first file after midnight. See also timezone.

https://docs.python.org/2/library/re.html

● first_of_week N
For the last N weeks from now, keep the first file after Sunday midnight.

● first_of_month N
For the last N months from now, keep the first file after the start of the month.

● first_of_year N
For the last N years from now, keep the first file after the start of the year.

strptime_format
A python strptime format string used to first match the filenames of backups and then parse the
filename to determine the datetime of the file. See also:
https://docs.python.org/2/library/datetime.html#datetime.datetime.strptime Defaults to None,
which considers all files in the directory to be backups eligible for deletion and uses
os.path.getmtime() to determine the datetime.

timezone
The timezone to use when determining midnight. This is only used when datetime is pulled from
os.path.getmtime(). Defaults to None which uses the timezone from the locale.

Usage example: Example:

/var/backups/example_directory:
file.retention_schedule:

- retain:
most_recent: 5
first_of_hour: 4
first_of_day: 7
first_of_week: 6 # NotImplemented yet.
first_of_month: 6
first_of_year: all

- strptime_format: example_name_%Y%m%dT%H%M%S.tar.bz2
- timezone: None

salt.states.file.serialize(name, dataset=None, dataset_pillar=None, user=None,

group=None,mode=None, backup='',makedirs=False, show_changes=True, create=True,
merge_if_exists=False, encoding=None, encoding_errors='strict', serializer=None,
serializer_opts=None, deserializer_opts=None, **kwargs)

Serializes a dataset and stores it in into a managed file. Useful for sharing simple configuration
files.

name

https://docs.python.org/2/library/datetime.html#datetime.datetime.strptime

The location of the file to create.

dataset
The dataset that will be serialized.

dataset_pillar
Operates like dataset, but draws from a value stored in pillar, using the pillar path syntax used
in pillar.get. This is useful when the pillar value contains newlines, as referencing a pillar
variable using a jinja/mako template can result in YAML formatting issues due to the newlines
causing indentation mismatches.
New in version 2015.8.0.

serializer (or formatter)
Write the data as in this format. See the list of serializer modules for supported output formats.
Changed in version 3002: serializer argument added as an alternative to formatter. Both
are accepted, but using both will result in an error. Similar to formatter. Using both
formatter and serializer will result in an error.

encoding
If specified, then the specified encoding will be used. The encoding to be used if specified.
Otherwise, the file will be encoded using the system locale (usually UTF-8). See
https://docs.python.org/3/library/codecs.html#standard-encodings for the list of available
encodings.
New in version 2017.7.0.

encoding_errors
Error encoding scheme. Default is `'strict'`. See
https://docs.python.org/2/library/codecs.html#codec-base-classes for the list of available
schemes.
New in version 2017.7.0.

user
The user to own the directory, . this d Defaults to the user Salt is running as on the minion.

group
The group ownership set for the directory.. this d Defaults to the group Salt is running as on the
minion.

mode
The permissions to set on this file, e.g. 644, 0775, or 4664.
The default mode for new files and directories corresponds to umask of Salt process. For
existing files and directories it's not enforced.

Note:

https://docs.saltproject.io/en/latest/ref/modules/all/salt.modules.pillar.html#salt.modules.pillar.get
https://docs.saltproject.io/en/latest/ref/serializers/all/index.html#all-salt-serializers
https://docs.python.org/3/library/codecs.html#standard-encodings
https://docs.python.org/2/library/codecs.html#codec-base-classes

This option is not supported on Windows.

backup
Overrides the default backup mode for this specific the specified file.

makedirs
Create parent directories for the destination file.
New in version 2014.1.3.

show_changes
Output a unified diff of the old file and the new file. If False return a boolean if any changes
were made.

create
Default is True, if create is set to False then the file will only be managed if the file already
exists on the system.

merge_if_exists
Default is False,. If merge_if_exists is True then the existing file will be parsed and the
dataset passed in will be merged with the existing content.
New in version 2014.7.0.

serializer_opts
Pass through options to serializer.

For example:
/etc/dummy/package.yaml

file.serialize:
- serializer: yaml
- serializer_opts:

- explicit_start: True
- default_flow_style: True
- indent: 4

The valid opts are the additional opts (i.e. not the data being serialized) for the function used to
serialize the data. Documentation for the these functions can be found in the list below:

- For yaml: yaml.dump()
- For json: json.dumps()
- For python: pprint.pformat()
- For msgpack: Run python -c 'import msgpack; help(msgpack.Packer)' to

see the available options (encoding, unicode_errors, etc.)

deserializer_opts

https://pyyaml.org/wiki/PyYAMLDocumentation
https://docs.python.org/2/library/json.html#json.dumps
https://docs.python.org/2/library/pprint.html#pprint.pformat

Like serializer_opts above, but only used when merging with an existing file (i.e. when
merge_if_exists is set to True).

The options specified here will be passed to the deserializer to load the existing data, before
merging with the specified data and re-serializing.

/etc/dummy/package.yaml
file.serialize:

- serializer: yaml
- serializer_opts:

- explicit_start: True
- default_flow_style: True
- indent: 4

- deserializer_opts:
- encoding: latin-1

- merge_if_exists: True

The valid opts are the additional opts (i.e. not the data being deserialized) for the function used
to deserialize the data. Documentation for the these functions can be found in the list below:

- For yaml: yaml.load()
- For json: json.loads()

However, note that not all arguments are supported. For example, when deserializing JSON,
arguments like parse_float and parse_int which accept a callable object cannot be
handled in an SLS file.
New in version 2019.2.0.

For example, this state:
/etc/dummy/package.json:

file.serialize:
- dataset:

name: naive
description: A package using naive versioning
author: A confused individual <iam@confused.com>
dependencies:

express: '>= 1.2.0'
optimist: '>= 0.1.0'

engine: node 0.4.1
- serializer: json

will manage the file /etc/dummy/package.json:
{

"author": "A confused individual <iam@confused.com>",
"dependencies": {

https://pyyaml.org/wiki/PyYAMLDocumentation
https://docs.python.org/2/library/json.html#json.loads

"express": ">= 1.2.0",
"optimist": ">= 0.1.0"

},
"description": "A package using naive versioning",
"engine": "node 0.4.1",
"name": "naive"

}

salt.states.file.shortcut(name, target, arguments=None,working_dir=None,

description=None, icon_location=None, force=False, backupname=None,makedirs=False,
user=None, **kwargs)

Creates a Windows shortcut.

If the file already exists and is a shortcut pointing to any location other than the specified target,
the shortcut will be replaced. If it is a regular file or directory then the state will return False. If
the regular file or directory is desired to be replaced with a shortcut pass force: True, if it is to be
renamed, pass a backupname.

name
The location of the shortcut to create. Must end with either ".lnk" or ".url."

target
The location that the shortcut points to.

arguments
Any arguments to pass in the shortcut.

working_dir
Working directory in which to execute target.

description
Description to set on shortcut.

icon_location
Location of shortcut's icon.

force
If the name of the shortcut exists and is not a file and force is set to False, the state will fail. If
force is set to True, the link or directory in the way of the shortcut file will be deleted to make
room for the shortcut, unless backupname is set, when it will be renamed.

backupname
If the name of the shortcut exists and is not a file, it will be renamed to the backupname. If the
backupname already exists and force is False, the state will fail. Otherwise, the backupname
will be removed first.

makedirs
If the location of the shortcut does not already have a parent directory then the state will fail,
setting makedirs to True will allow Salt to create the parent directory. Setting this to True will
also create the parent for backupname if necessary.

user
The user to own the file. This defaults to the user Salt is running as on the minion
The default mode for new files and directories corresponds to umask of Salt process. For
existing files and directories it's not enforced.

salt.states.file.symlink(name, target, force=False, backupname=None,

makedirs=False, user=None, group=None,mode=None,win_owner=None,win_perms=None,

win_deny_perms=None,win_inheritance=None, **kwargs)

Creates a symbolic link (symlink, soft link).

If the file already exists and is a symlink pointing to any location other than the specified target,
the symlink will be replaced. If an entry with the same name exists then the state will return
False. If the existing entry is desired to be replaced with a symlink pass force: True, if it is to be
renamed, pass a backupname.

name
The location of the symlink to create.

target
The location that the symlink points to.

force
If the name of the symlink exists and is not a symlink and force is set to False, the state will
fail. If force is set to True, the existing entry in the way of the symlink file will be deleted to
make room for the symlink, unless backupname is set, when it will be renamed.
Changed in version 3000: force will now remove all types of existing file system entries, not
just files, directories and symlinks.

backupname

If the name of the symlink exists and is not a symlink, it will be renamed to the backupname. If
the backupname already exists and force is False, the state will fail. Otherwise, the
backupname will be removed first. An absolute path OR a basename file/directory name must
be provided. The latter will be placed relative to the symlink destination's parent directory.

makedirs
If the location of the symlink does not already have a parent directory then the state will fail,
setting makedirs to True will allow Salt to create the parent directory.

user
The user to own the file, this defaults to the user Salt is running as on the minion.

group
The group ownership set for the file, this defaults to the group Salt is running as on the minion.
On Windows, this is ignored.

mode
The permissions to set on this file, aka 644, 0775, 4664. Not supported on Windows.
The default mode for new files and directories corresponds to umask of Salt process. For
existing files and directories it's not enforced.

win_owner
The owner of the symlink and directories if makedirs is True. If this is not passed, user will be
used. If user is not passed, the account under which Salt is running will be used.
New in version 2017.7.7.

win_perms
A dictionary containing permissions to grant.
New in version 2017.7.7.

win_deny_perms
A dictionary containing permissions to deny.
New in version 2017.7.7.

win_inheritance
Set to True to inherit permissions from parent, otherwise False.
New in version 2017.7.7.

salt.states.file.tidied(name, age=0,matches=None, rmdirs=False, size=0,

exclude=None, full_path_match=False, followlinks=False, time_comparison='atime', **kwargs)

Changed in version 3005.

Removes unwanted files based on specific criteria. Multiple criteria are OR’d together, so a file
that is too large but is not old enough will still get tidied. If neither age nor size is given all files
which match a pattern in matches will be removed.

Note:
The regex patterns in this function are used in re.match(), so there is an implicit "beginning of
string" anchor (^) in the regex and it is unanchored at the other end unless explicitly entered ($).

name
The directory tree that should be tidied.

age
Maximum age in days after which files are considered for removal.

matches
List of regular expressions to restrict what gets removed. Default: ['.*']

rmdirs
Whether or not it is True if allowed to remove directories; False if not allowed.

size
Maximum allowed file size. Files greater or equal to this size are removed. Doesn't apply to
directories or symbolic links

exclude
List of regular expressions to filter the matches parameter and better control what gets
removed.
New in version 3005.

full_path_match
Match the matches and exclude regex patterns against the entire file path instead of just the file
or directory name. Default: False
New in version 3005.

followlinks
This module will not descend into subdirectories which are pointed to by symbolic links. If you
wish to force it to do so, you may give this option the value True. Default: False

New in version 3005.

time_comparison
Default: atime. Options: atime/mtime/ctime. This value is used to set the type of time
comparison made using age. The default is to compare access times (atime) or the last time
the file was read. A comparison by modification time (mtime) uses the last time the contents of
the file was changed. The ctime parameter is the last time the contents, owner, or permissions
of the file were changed.
New in version 3005.

cleanup:
file.tidied:

- name: /tmp/salt_test
- rmdirs: True
- matches:

- foo
- b.*r

salt.states.file.touch(name, atime=None,mtime=None,makedirs=False)

Replicates the 'nix "touch" command to create a new empty file or update the atime and
mtime of an existing file.

Note that if you just want to create a file and don't care about atime or mtime, you should use
file.managed instead, as it is more feature-complete. (Just leave out the
source/template/contents arguments, and it will just create the file and/or check its permissions,
without messing with contents)

name
Name of the file.

atime
atime of the file.

mtime
mtime of the file.

makedirs
Specifies whether we should to create the parent directory/directories in order to touch the file.

Usage: Example:
/var/log/httpd/logrotate.empty:

file.touch

New in version 0.9.5.

salt.states.file.uncomment(name, regex, char='#', backup='.bak')

Uncomments specified commented lines in a file

name
The full path to the file to be edited.

regex
A regular expression used to find the lines that are to be uncommented. This regex should not
include the comment character. A leading ^character will be stripped for convenience (for easily
switching between comment() and uncomment()). The regex will be searched for from the
beginning of the line, ignoring leading spaces (we prepend '^[t]*')

char
The character to remove in order to uncomment a line.

backup
The file will be backed up before edit with this file extension.

Warning:
This backup will be overwritten each time sed / comment / uncommentis called. Meaning the
backup will only be useful after the first invocation.
Set to False/None to not keep a backup.

Usage: Example:
/etc/adduser.conf:

file.uncomment:
- regex: EXTRA_GROUPS

New in version 0.9.5.

